

Modulating control valves with magnetic actuator, No. 16

MVF461H..

for hot water, high temperature hot water and steam

- Short positioning time (<2 s), high resolution (1 : 1000)
- Selectable valve characteristic: Equal-percentage or linear
- High rangeability
- Selectable standard interface DC 0/2...10 V or DC 0/4...20 mA
- Phase-cut signal input for Staefa controllers
- Position control and position feedback signal
- Wear-free inductive stroke measurement
- Spring return facility: A → AB closed when deenergized
- · Low friction, robust and maintenance-free

Use

The MVF461H..valve types are through-port control valves with fitted magnetic actuator. The actuator is equipped with connecting electronics for positioning control and position feedback. When deenergized, the valve is closed.

The short positioning time, high resolution and high rangeability make these valves ideal for proportional control of district heating stations and heating plant using HTHW and steam. For closed circuits only.

Type reference	DN	k _{VS}	Δp_{max}	Δps	Operating	Position	Spring	
		[m ³ /h]	[kPa]	[kPa]	voltage	signal	time	return
MVF461H15-0.6		0.6						
MVF461H15-1.5	15	1.5				500 (0)		
MVF461H15-3		3				DC 010 V or		
MVF461H20-5	20	5		4000	10 / 00 04) /	DC 210 V	. 0 -	√
MVF461H25-8	25	8	1000	1000	AC / DC 24 V	or DC 020 mA	< 2 s	•
MVF461H32-12	32	12				or		
MVF461H40-20	40	20				DC 420 mA		
MVF461H50-30	50	30						

 Δp_{max} = max. permissible differential pressure across the valve's control path, valid for the entire actuating range of the motorized valve

Δps = max. permissible differential pressure (close off pressure) at which the motorized valve will close securely against the pressure (used as through-port valve)

 k_{VS} = nominal flow rate of cold water (5 to 30 °C) through the fully opened valve (H₁₀₀) at a differential pressure of 100 kPa (1 bar)

Ordering

When ordering, please give quantity, product name and type reference.

Type reference	Stock number	Description
MVF461H15-0.6	MVF461H15-0.6	Flanged valve with magnetic actuator

Valve body and magnetic actuator form one assembly and cannot be separated.

Replacement electronics module

ASE12

Should the valve electronics prove faulty, the electronics module must be replaced by the ASE12 replacement electronics module.

Mounting Instructions 74 319 0404 0 are included.

Rev. no.

Overview table, see page 14.

Technical and mechanical design

For a detailed description of operation, refer to Data Sheet CA1N4028E.

Control operation

The electronics module converts the positioning signal to a phase-cut power signal which generates a magnetic field in the coil. This causes the armature to change its position in accordance with the interacting forces (magnetic field, counterspring, hydraulics, etc.). The armature responds rapidly to any change in signal, transferring the corresponding movement directly to the valve plug, enabling fast changes in load to be corrected quickly and accurately.

The valve's position is measured continuously. Any disturbance in the system is rapidly corrected by the internal positioning controller, which ensures that the positioning signal and the valve stroke are exactly proportional, and also delivers the position feedback signal.

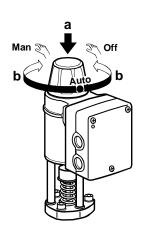
Control

The magnetic actuator can be driven by a Siemens controller or a controller of other manufacture that deliver a DC 0/2...10 V or DC 0/4...20 mA output signal. To achieve optimum control performance, it is recommended to use a 4-wire connection for the valve. In case of DC power supply, a 4-wire connection is mandatory!

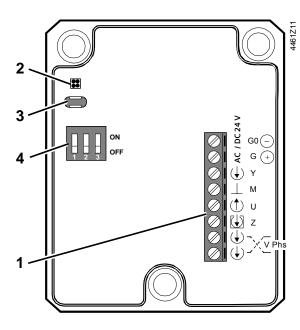
The controller's signal ground terminal M must be connected to the valve's terminal M. Terminals M and GO have the same potential and are internally interconnected in the valve's electronics.

Spring return facility

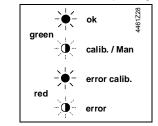
If the positioning signal is interrupted, or in the event of a power failure, the valve's return spring will automatically close control path $A \rightarrow AB$.

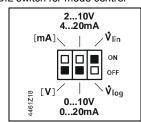

Manual control

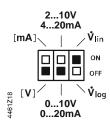
By pressing (a) and turning (b) the hand wheel


- in clockwise (CW) direction, control path A → AB can be mechanically opened to between 80 and 90 %
- in counterclockwise (CCW) direction, the actuator will be switched off and the valve closed

As soon as the hand wheel is pressed and turned, neither the forced control signal Z nor the input signal Y or the phase-cut signal acts on the actuator. The green LED will flash.


For automatic control, the hand wheel must be set to the Auto position. The green LED will be lit.


Operator controls and indicators in the electronics housing


- 1 Connection terminals
- LED for indication of operating state

- 3 Slot for autocalibration
- 4 DIL switch for mode control

Configuration DIL switches

Switch	Function	ON / OFF	Description
1 0 ON 0 OFF	Desitioning signal V	ON	[mA]
	Positioning signal Y	OFF	[V] 1)
2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Positioning range	ON	210 V, 420 mA
Ģ □ ■ □ OFF	Y and U	OFF	010 V , 020 mA ¹⁾
3 ON OFF	Value abaracteriatio	ON	V _{lin} (linear) ¹)
4461 OFF	Valve characteristic	OFF	\dot{V}_{\log} (equal-percentage)

) Factory settings

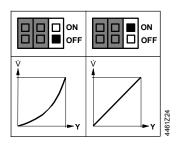
Selection positioning signal and range Y Voltage and current

(↓) Y	ON OFF	ON OFF
ON OFF	010 V	210 V
ON OFF	020 mA	420 mA

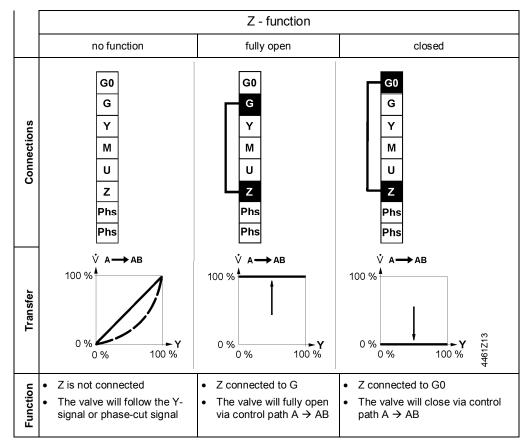
Selection positioning range Y and U:

0...10 V / 0...20 mA or 2...10 V / 4...20 mA

(†) U	ON OFF	ON OFF	
Ri > 500 Ω	010 V	210 V	
Ri < 500 Ω	020 mA	420 mA	4461723


Output signal U (position feedback signal) is dependent on the load resistance Ri.

Ri > 500 Ω , \rightarrow voltage signal


Ri < 500 Ω , \rightarrow current signal

Selection valve characteristics

Equal-percentage or linear

Forced control input Z

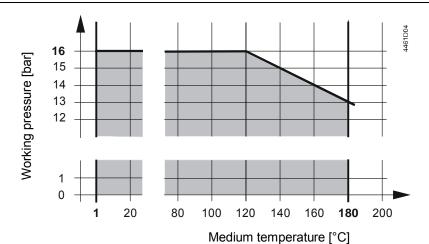
Signal priority

- 1. Hand wheel position Man (open) or Off
- 2. Forced control signal Z
- 3. Phase-cut signal Phs
- 4. Signal input Y

Calibration

If the electronics module is replaced or the actuator turned through 180 $^{\circ}$, the valve's electronics must be recalibrated. For that, the hand wheel must be set to Auto.

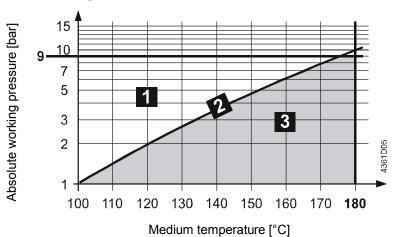
The printed circuit board has a slot (position 3, preceding page). Calibration is made by bridging the contacts located behind the slot using a screwdriver. The valve will then travel across the full stroke to store the end positions.


While calibration is in progress, the green LED will flash for about 10 seconds (also refer to «Indication of operating state»).

Indication of operating state

LED	Indication		Function	Remarks, troubleshooting
Green	Lit		Control mode	Normal operation; everything o.k.
	Flashing	-)•[-	Calibration	Wait until calibration is finished (green or red LED will be lit)
			In manual control	Hand wheel in Man or Off position
Red	Lit	-\-	Calibration error	Recalibrate (bridge contacts behind the calibration
		/ <u> </u> \	Internal error	slot)
				Replace electronics module
	Flashing	-)•(-	Mains fault	Check mains network (outside the frequency or voltage range)
			DC Supply - / +	DC supply + / - connection rectify
Both	Dark	0	No power supply	Check mains network, check wiring
		0	Electronics faulty	Replace electronics module

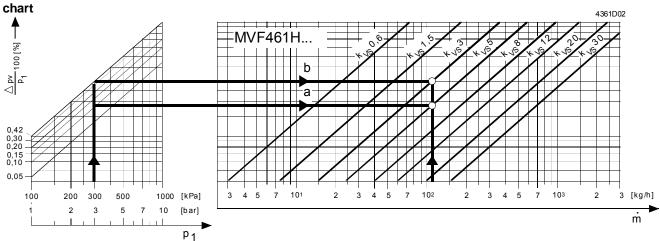
Dimension


Working pressure and medium temperature Fluids

Λ

Current local legislation must be observed.

Saturated steam Superheated steam



1 2

3

Water wet steam avoid
saturated steam
superheated steam permissible range of use

Saturated steam flow

Recommendation

For saturated steam and superheated steam the differential pressure Δp_{max} across the valve should be close to the critical pressure ratio.

Pressure ratio =
$$\frac{p_1 - p_3}{p_1} \cdot 100\%$$

p₁ = absolute pressure before valve in kPa

o₃ = absolute pressure after valve in kPa

Calculation of the k_{vs} value for steam

Subcritical range

$$\frac{p_{_1}-p_{_3}}{p_{_1}}\cdot 100\% < 42\%$$

Pressure ratio < 42% subcritical

$$k_{vs} = 4.2 \cdot \frac{\dot{m}}{\sqrt{p_3 \cdot (p_1 - p_3)}} \cdot k$$

Supercritical range

$$\frac{p_{_1}-p_{_3}}{P_{_4}}\cdot 100\% \geq 42\%$$

Pressure ratio ≥ 42% supercritical (not recommended)

$$k_{vs} = 8.4 \cdot \frac{\dot{m}}{p_1} \cdot k$$

m = steam quantity in kg/h

 $k = factor for superheating of steam = 1 + 0.0013 \cdot \Delta T (k = 1 for saturated steam)$

 $\Delta T \,$ = $\,$ temperature differential in K between saturated steam and superheated steam

Example

given saturated steam 133.54 °C

 p_1 = 300 kPa (3 bar) \dot{m} = 110 kg/h pressure ratio = 12 % saturated steam 133.54 °C $p_1 = 300 \text{ kPa}$ (3

p₁ bar)

 \dot{m} = 110 kg/h pressure ratio \geq 42 %

(supercritical permitted)

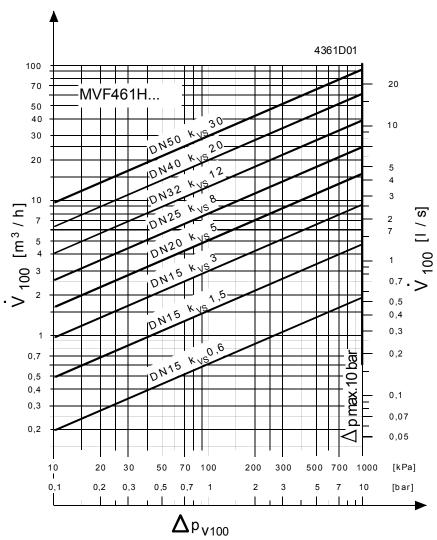
k_{vs}, valve type

required k_{vs}, valve type

procedure

$$p_3 = p_1 - \frac{12 \cdot p_1}{100}$$

$$p_3 = 300 - \frac{12 \cdot 300}{100} = 264 \text{ kPa (2.64 bar)}$$


$$k_{vs} = 4.2 \cdot \frac{110}{\sqrt{264 \cdot (300 - 264)}} \cdot 1 = 4.74 \text{ m}^3 / \text{h}$$

selected $k_{vs} = 5 \text{ m}^3/\text{h}$ \Rightarrow MVF461H20-5

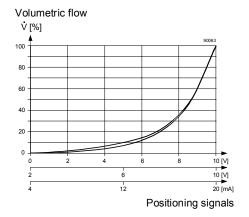
$$k_{vs} = 8.4 \cdot \frac{110}{300} \cdot 1 = 3.08 \,\text{m}^3 \,\text{/h}$$

 $k_{vs} = 3 \text{ m}^3/\text{h}$ \Rightarrow MVF461H15-3

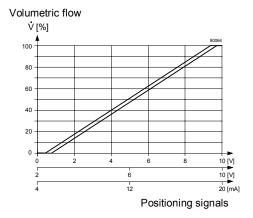
Water flow chart

 $\Delta p_{V100}~=~$ differential pressure across the fully open valve and the valve's control path A \rightarrow AB by a volume flow \dot{V}_{100}

 \dot{V}_{100} = volume flow through the fully open valve (H₁₀₀)


 Δp_{max} = max. permissible differential pressure across the valve's control path for the entire actuating range of the motorized valve

100 kPa = 1 bar ≈ 10 mWC


 $1 \text{ m}^3/\text{h} = 0.278 \text{ l/s water at } 20 ^{\circ}\text{C}$

Valve characteristic

Equal-percentage

Linear

Connection type 1)

The 4-wire connection should always be given preference!

4-wire connection

Type reference	S _{NA} [VA]	P _{MED} [W]	S _{TR}	P _{TR} [W]	I _F [A]	1,5	oss-section 2,5 cable ler [m]	4,0
MVF461H15-0.6								
MVF461H15-1.5								
MVF461H15-3	33	15	≥50	≥50	3.15	60	100	160
MVF461H20-5								
MVF461H25-8								
MVF461H32-12	43	20	≥75		4	40	70	120
MVF461H40-20	65	26	>100	≥70	6.3	20	50	90
MVF461H50-30	UO	26	≥100		0.3	30	50	80

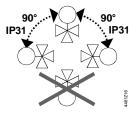
 S_{NA} = nominal apparent power

P_{med} = typical power consumption in the application

 S_{TR} = Minimum apparent transformer power

P_{TR} = Minimum DC supply power I_F = Minimal required slow fuse

L = max. cable length; with 4-wire connections, the max. permissible length of the separate 1.5 mm² copper positioning signal wire is 200 m


Mounting notes

The valve is supplied complete with Mounting Instructions 74 319 0378 0.

Caution \triangle

The valve may only be used in flow direction (A \rightarrow AB). Observe the direction of flow!

Mounting position

Installation notes

The actuator may not be lagged

For electrical installation, refer to «Connection diagrams».

replaced (refer to Mounting Instructions 74 319 0404 0).

Maintenance notes

The low friction and robust, maintenance-free design makes regular servicing unnecessary and ensure a long service life.

The valve stem is sealed from external influences by a maintenance-free gland.

If the red LED is lit, the electronics must be recalibrated or replaced.

Should the valve electronics prove faulty, the ASE12 electronics module must be

Caution 🛆

Always disconnect power before fitting or removing the electronics module.

After replacing the electronics module, calibration must be triggered in order to optimally match the electronics to the valve (refer to «Calibration»).

Repair

¹⁾ All information at AC 24 V or DC 24V

The device is considered electrical and electronic equipment for disposal in terms of the applicable European Directive and may not be disposed of as domestic garbage.

- Dispose of the device through channels provided for this purpose.
- Comply with all local and currently applicable laws and regulations.

Warranty

Application-specific technical data must be observed.

If specified limits are not observed, Siemens will not assume any responsibility.

Technical data

Functional data of ac	ctuator	F	(OEL)/ DEL)	0		
Power supply	A C 04 V	For use with low-voltage only	(SELV, PEL			
	AC 24 V	Operating voltage		AC 24 V ±20% (SELV) or		
		Frequency		AC 24 V class 2 (US) 4565 Hz		
		Typical power consumption	P_{med}	refer to «Connection type», page 8		
		Typical power consumption	Standby	< 1 W (valve fully closed)		
		Rated apparent power S _{NA}	Otariaby	refer to «Connection type», page 8		
		Required fuse I _F		slow, «Connection type», page 8		
		External supply line protectio	n	Fuse slow max. 10 A		
		Zatornal cappi) into protectio		or		
				Circuit breaker max. 13 A		
				Characteristic B, C, D according to		
				EN 60898		
				or		
				Power source with current limitation of		
				max. 10 A		
	DC 24 V	Operating voltage		DC 2030 V		
Signal inputs		Control signal Y		DC 0/210 V		
				DC 0/420 mA		
			_	DC 020 V Phs		
		Impedance DC 0/210		100 k Ω // 5nF (load < 0.1 mA)		
		DC 0/420 m	Α	240 Ω // 5nF		
		Forced control Z				
		Impedance		22 kΩ		
		Closing the valve (Z conn				
		Opening the valve (Z con				
0: 1 1		No function (Z not wired u	• •	phase-cut or control signal Y active		
Signal outputs		Position feedback signal vol	•	DC 0/210 V; load resistance > 500 Ω		
		Ctroke magazrament	erit	DC 0/420 mA; load resistance \leq 500 Ω		
		Stroke measurement		inductive ± 3 % of end value		
Positionina time		Nonlinearity Positioning time		< 2 s		
Electrical connection	ie.	Cable entries		2 x Ø 20,5 mm (for M20)		
Licotrical confidention	13	Connection terminals		screw terminals for 4 mm ² wires		
		Min. wire cross-section		0.75 mm ²		
		Max. cable length		refer to «Connection type», page 8		

Functional data of valve

Materials

Weight and dimensions

Norms and directives

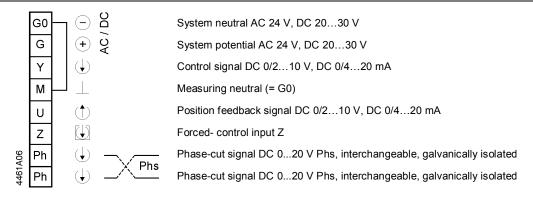
<u> </u>		D140 (51 4000				
Pressure class	1)	PN16 to EN 1333				
Permissible operating pressure	e ¹⁾	within the permissible "medium temperature"				
		range according to the diagram on page 5				
		Water up to 120 °C: 1.6 MPa (16 bar)				
		Water above 120 °C: 1.3 MPa (13 bar)				
		Saturated steam: 0.9 MPa (9 bar)				
Differential pressure Δpmax / Δp		1 MPa (10 bar)				
Leakage rate at $\Delta p = 0.1 \text{ MPa}$	(1 bar)	$A \rightarrow AB \text{ max. } 0.05 \% \text{ k}_{VS}$				
Valve characteristic 2)		equal percentage, n_{gl} = 3 to VDI / VDE 2173				
		or linear, optimized near the closing point				
Permissible media	Water	chilled water, low temperature hot water, high				
		temperature hot water, water with				
		anti-freeze; recommendation: water				
		treatment to VDE 2035				
S	Steam	Saturated steam, superheated steam				
		dryness at inlet minimum 0.98				
Medium temperature		>1180 °C				
Stroke resolution $\Delta H / H_{100}$		1 : 1000 (H = stoke)				
Position when actuator is deen	ergized	A → AB closed				
Mounting position		upright to horizontal				
Control mode		modulating				
Valve body		modular cast iron EN-GJS-400-18-LT				
Covering flange		modular cast iron EN-GJS-400-18-LT				
Seat / plug		CrNi-steel				
Valve stem seal		EPDM (O-ring)				
Dimensions		refer to «Dimensions»				
Weight		refer to «Dimensions»				
Electromagnetic compatibility		For residential, commercial and light-				
(Application)		industrial environments				
Product standard		EN60730-x				
EU Conformity (CE)		CA2T4361.1 3)				
RCM Conformity		A5W00004454 ³⁾				
EAC Conformity		Eurasia Conformity for all MVF				
Housing protection		Editable Committing for all WVV				
Upright to horizontal		IP31 to EN 60529				
Vibration 4)		EN 60068-2-6				
1.0.0001		(1 g acceleration, 1100 Hz, 10 min)				
UL certification (US)		UL 873, http://ul.com/database				
CSA certification		C22.2 No. 24, http://csagroup.org				
Environmental compatibility		The product environmental declaration				
Environmental compatibility		CE1E4361en ³⁾ contains data on				
		environmentally compatible product design				
		and assessments (RoHS compliance,				
		materials composition, packaging,				
Pressure Equipment Directive		environmental benefit, disposal).				
Pressure accessories		PED 2014/68/EU Scope: Article 1, section 1				
Flessure accessories		Scope: Article 1, section 1				
Eluid group 2:	VI 15 FO	Definitions: Article 2, section 5				
Fluid group 2: Di	N 1550	without CE-marking as per article 4, section 3				

 $^{^{1)}\,\,}$ Tested at 1.5 x PN (24 bar), similar to EN 12266-1

(sound engineering practice) 5)

²⁾ Can be selected via DIL switch

 $^{^{3)}}$ The documents can be downloaded from $\underline{\text{http://siemens.com/bt/download}}.$


⁴⁾ In case of strong vibrations, use high-flex stranded wires for safety reasons.

⁵⁾ Valves where PS x DN < 1000, do not require special testing and cannot carry the CE label.

General environmental conditions

	Operation	Transport	Storage
	EN 60721-3-3	EN 60721-3-2	EN 60721-3-1
Climatic conditions	Class 3K5	Class 2K3	Class 1K3
Temperature	-5+45 °C	-25+70 °C	-5+45 °C
Humidity	595 % r.h.	595 % r.h.	595 % r.h.
Mechanical conditions	EN 60721-3-6		
	Class 3M2		

Connection terminals

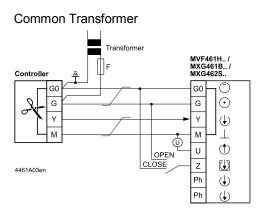
Connection diagrams

Warning \triangle

If controller and valve receive their power from separate sources, only one transformer may be earthed on the secondary side.

Caution \triangle

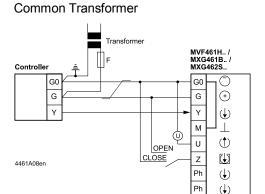
In case of DC power supply, a 4-wire connection is mandatory!

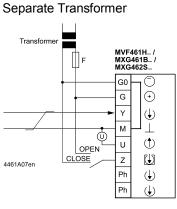

Terminal assignment for controller with 4-wire connection (to be preferred!).

DC 0...10 V

DC 2...10 V

DC 0...20 mA

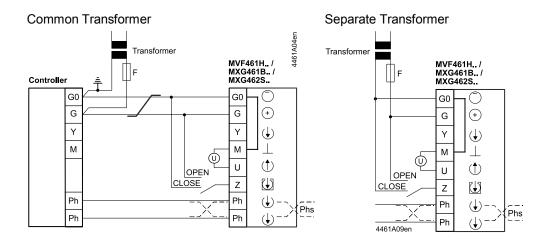

DC 4...20 mA



Separate Transformer Transformer MVF461H../ MXG461B../ MXG462S.. G0 G **(**+) Υ $(\cup{\downarrow})$ М (†) U OPEN \bigcirc CLOSE Z 4461A07en Ph $(\cup{\downarrow})$ **(**

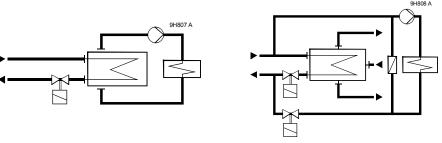
Terminal assignment for controller with 3-wire connection DC 0...10 V DC 2...10 V DC 0...20 mA

DC 4...20 mA


Indication of valve position (only if required). DC 0 $\stackrel{'}{...}$ 10 V \rightarrow 0...100 % volumetric flow V₁₀₀

Twisted pairs. If the lines for AC 24 V power supply and the DC 0...10 V (DC 2...10 V, DC 4... 20 mA) positioning signal are routed separately, the AC 24 V line need not be twisted.

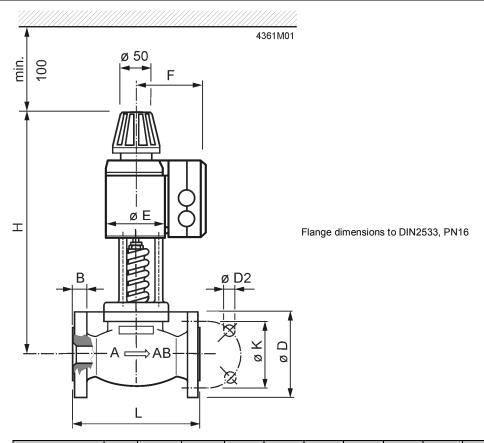
Warning \triangle


Piping must be connected to potential earth!

Controllers with phase-cut DC 0...20 V Phs

Application examples

The examples shown below are basic diagrams with no installation-specific details.



District heating (supply heating) system, indirect connection.

District heating (supply heating) system, directly connected to water-heating system

Caution \triangle

The valve may only be used in flow direction (A \rightarrow AB). The direction of flow must be observed!

Type reference	DN	L	ø D	ø D2	В	øΚ	Н	øΕ	F	Weight
		[mm]	[kg]							
MVF461H15-0.6	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H15-1.5	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H15-3	15	130	95	4x14	14	65	340	80	115	8,3
MVF461H20-5	20	150	105	4x14	16	75	339	80	115	8,9
MVF461H25-8	25	160	115	4x14	16	85	346	80	115	10,0
MVF461H32-12	32	180	140	4x18	18	100	384	100	125	15,7
MVF461H40-20	40	200	150	4x18	18	110	401	100	125	17,8
MVF461H50-30	50	230	165	4x18	20	125	449	125	138	27,2

Weight incl. packaging

Type reference	Valid from rev. No.
MVF461H15-0.6	C
MVF461H15-1.5	C
MVF461H15-3	C
MVF461H20-5	В
MVF461H25-8	В
MVF461H32-12	В
MVF461H40-20	C
MVF461H50-30	В

Issued by
Siemens Switzerland Ltd
Building Technologies Division
International Headquarters
Gubelstrasse 22
6301 Zug
Switzerland
Tel. +41 58-724 24 24
www.siemens.com/buildingtechnologies

14/14